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Figure 13. Projected electron density of the summation of Li2 and triplet 
methylene with contour levels from 0.001 to 0.091 by 0.01 e au"2. Dashed 
line is the demarcation line for tetrahedral triplet CH2Li2. 

dilithiomethane with one electron in a Li-Li bonding orbital is 
being compared with a model having a two-electron Li-Li bond. 
Nevertheless, the model greatly assists in explaining the reversed 
dipole moment of the triplets. Triplet methylene has a dipole 

I. Introduction 
The usual procedure to predict molecular shapes is to carry out 

a set of numerical calculations on selected geometries and to retain 
the one that yields an absolute minimum.1"3 Such calculations 
often explore only a minute part of the Born-Oppenheimer hy-
persurface and may fail to elucidate the general topological 

(1) Elian, M.; Hoffmann, R. Inorg. Chem. 1975, 14, 1058. 
(2) Burdett, J. K. J. Chem. Soc, Faraday Trans. 2 1974, 70, 1599. 
(3) Burdett, J. K. "Molecular Shapes"; Wiley: New York, 1980. 
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moment of 0.66 D with the hydrogen end being positive. Thus, 
the decrease of the positivity of the lithiums in the triplet state 
allows for the inherent dipole of triplet methylene to become 
significant, enough so as to actually reverse the direction of the 
dipole moment of dilithiomethane. 

For a similar system, 1,1-dilithioethylene, a dipole moment 
reversal has been noted for the planar triplet and tetrahedral triplet 
states.16 Their argument for explaining increased electron density 
about lithium in the triplets is similar to ours. However, it is not 
clear that a Mulliken population difference of 0.13 e between the 
singlet and the triplet is both an accurate expression of the electron 
population about lithium or sufficient for reversing the dipole 
moment. Triplet 1,1-dilithioethylene may be modeled as triplet 
vinylidene associated with Li2 (analogous to our model for di­
lithiomethane). The inherent dipole moment of vinylidene is 0.43 
D with the hydrogen end positive. Therefore, the dipole moment 
may reverse in the same fashion as for dilithiomethane; i.e., a 
decreased positivity of lithium allows the dipole moment con­
tribution of triplet vinylidene to become dominant. 
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(16) (a) Laidig, W. D.; Schaefer, H. F., III. J. Am. Chem. Soc. 1979,101, 
7184. (b) Apeloig, Y.; Schleyer, P. v. R.; Binkley, J. S.; Pople, J. A. Ibid. 
1976, 98, 4332. 

structure of that surface. This structure can hardly be obtained 
by point-to-point calculations. Rather, what is required is an 
understanding of the hyperplane's geometry and its general sym­
metry properties.4 

In some cases, a useful starting point is provided by the 
Jahn-Teller (JT) theorem, especially in its perturbational form 
as described by Opik and Pryce.5 It applies whenever the surface 

(4) Pearson, R. "Symmetry Rules for Chemical Reactions"; Wiley: New 
York, 1976. 
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Abstract: The Jahn-Teller theorem predicts that highly symmetrical molecules with a degenerate ground state are subject 
to distorting forces, acting along certain nontotally symmetric vibrational modes. These vibrations carry the nuclei over into 
distorted configurations, corresponding to subgroup symmetries of the parent molecular point group. The group-theoretical 
concepts of kernel and epikernel are of immediate relevance in this respect, since they can be shown to describe respectively 
the lowest subgroup attainable and the allowed intermediate subgroups. Moreover a general epikernel principle can be proposed: 
stationary points on a Jahn-Teller potential surface will adopt epikernel rather than kernel symmetries; higher ranking epikernels 
are preferred over lower ranking epikernels. By a straightforward assignment of the relevant extremal points, this principle 
greatly simplifies the various theoretical methods that describe potential energy surfaces near a Jahn-Teller unstable origin. 
In addition, the kernel and epikernel concepts offer a very concise expression of the Mclver-Stanton reaction rules. The topological 
implications of the Jahn-Teller theorem can thus be fully explored. The present work avoids abstract terms; instead, the paper 
is conceived as a case study of the T X (t2 + e) problem. Several examples relating to the structure and reactivity of metal 
carbonyl molecular fragments are included. In these examples the signs of the vibronic coupling constants have been obtained 
by a generalization of Bacci's angular overlap model treatment. 
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Figure 1. Cartesian frame and ligand numbering in the tetrahedral ML4 
unit. Td subgroups will be labeled according to their orientation in this 
frame. As an example, in D2/ or C2J the principal symmetry axis 
coincides with the z axis. The trigonal axis in CyJ0" contains ligand 1; 
ligand 2 is the top ligand of C3/?

r, etc. axy is the diagonal symmery plane 
which bisects the right angle between positive x and y axis. Cs

xy is the 
associated subgroup. Similarly axf contains ligands 3 and 4, etc. 

is generated via symmetry-lowering distortions of a degenerate 
parent state in a highly symmetrical configuration.6 Although 
it has been widely recognized that Jahn-Teller instability is indeed 
one of the key features in transition-metal stereochemistry, existing 
structural studies in the field apparently have not fully explored 
the theorem's topological implications. 

In the present paper, we intend to show how symmetry principles 
can be used to infer the topology of the relevant adiabatic energy 
surfaces. The treatment will be centered on the example of the 
Jahn-Teller instability of a threefold degenerate state in tetra­
hedral metal complexes. Both the minima and the saddle points 
of the different surfaces will be discussed. The example is chosen 
because of its immediate relevance to the structure and dynamics 
of certain quasi-tetrahedral metal carbonyl fragments.2,7 

II. Jahn-Teller Effect for T Terms: Symmetry 
Considerations 

Since the symmetric product [T1 X T1] = [T2 X T2] = A1 + 
E + T2, the Jalin-Teller active vibrations for a threefold degenerate 
T state (T, or T2) are of e and t2 symmetry. In a tetrahedral AB4 

molecule, there is one e mode—of purely bending type—and two 
t2 modes, one of which is primarily bending, while the other one 
is primarily stretching. Usually, interference of the two t2 modes 
can be considered negligible as compared to interactions between 
the two quasi-degenerate bending modes. Direct experimental 
observation of bond length deformations in metal carbonyl 
fragments is entirely lacking. Therefore, the subsequent treatment 
will be restricted to the Jahn-Teller effect in the five-dimensional 
space of bending deformations. The normal coordinates will be 
denoted by Q6, Q, (for the e representation) and by Q^, Qn, Qf 

(for the t2 representation); the coordinate system and two char­
acteristic vibrational coordinates are shown in Figure 1 and 2. 

A. Symmetry of the Jahn-Teller Distorted Molecule. A sym­
metry-destroying coordinate, say Qa (where a stands for 6, t, £, 
jj, or f), will cause a narrowing of the original group G to one of 
its subgroups SQG 

Qa 

G^S (1) 

For a number of important point groups G, Jotham and Kettle8 

(5) Opik, U.; Pryce, M. H. L. Proc. R. Soc. London, Ser. A 1957, 238A, 
425. See also: Van Vleck, J. H. J. Chem. Phys. 1939, 7, 72. 

(6) For general reviews on the Jahn-Teller effect, consult: (a) Englman, 
R. "The Jahn-Teller Effect in Molecules and Crystals"; Wiley: New York, 
1972. (b) Bersuker, I. B. Coord. Chem. Rev. 1975, 14, 357. (c) Ammeter, 
J. H.; Zoller, L.; Bachmann, J.; Baltzer, P.; Gamp, E.; Bucher, R.; Deiss, E. 
HeIv. Chim. Acta 1981, 64, 1063. (d) Bersuker, I. B.; Polinger, V. Z. Adv. 
Quantum Chem. 1982, 15, 85-160. (e) Bersuker, I. B. "The Jahn-Teller 
Effect and Vibronic Interactions in Modern Chemistry"; Plenum Press: New 
York, 1984. 

(7) Davies, B.; McNeish, A.; Poliakoff, M.; Turner, J. J. J. Am. Chem. 
Soc. 1977, 99, 1513. 

(8) Jotham, R. W.; Kettle, S. F. A. Inorg. Chim. Acta 1971, 5, 183. 

Figure 2. Representative normal modes of e type (QJ) and t2 type (Q^). 
The arrows indicate the direction of positive amplitude (see also Ap­
pendix C). Other components can be obtained by applying the standard 
basis relationships. If Qt or gf are activated, the tetrahedral symmetry 
is lowered to, respectively, D2/ and C2J. 

have derived which subgroups 5 are accessible by activating a 
specific JT-active vibration. 

A somewhat more general approach of the same problem is 
based on the group theoretical concepts of kernels and epikernels 
(or cokernels).9"11 Only symmetry elements of G that leave Qa 

invariant will be conserved during the distortion; all other elements 
will be destroyed. Therefore, in the subgroup S, Qa will be totally 
symmetric, whereas in the parent group G, Qa is not totally 
symmetric by definition: it is one of the basis vectors describing 
the multidimensional space of the JT-active vibrations. The 
representation spanned by these basis vectors will be denoted by 
T (in the Td case, T can be e and/or t2). 

The kernel of a given representation T in G, denoted K(G,T), 
is the subgroup of G, containing all symmetry elements that are 
represented by unit matrices in T. In K(G,T), all basis functions 
of T become totally symmetric. If T is irreducible, the kernel is 
immediately obtained from character tables by collecting all 
symmetry elements whose characters in T are equal to the de­
generacy of T. An epikernel of T in G, denoted E(G,T), is a 
subgroup of G, containing all symmetry elements, for which at 
least one basis function of T can be chosen to be invariant.9 

Therefore, if T in G gives rise to T' in the epikernel subgroup, 
T" should be reducible and contain T1 at least once. Obviously, 
the kernel is the trivial or the minimal epikernel. 

As an example, consider the two vibrational coordinates (Q6, 
QJ), spanning the e representation of Td. Since the character 
equals 2 for the identity operation and for the class of the three 
C2 operations, the kernel K(Td,€) - D2. Obviously, e vibrations 
can destory all Td symmetry elements, except for those belonging 
to D2. Therefore, D2 is the lowest possible symmetry attainable 
by e vibrations only: in D2, both Q8 and Q1 (or any linear com­
bination thereof) have become totally symmetric and are unable 
to reduce the symmetry any further. 

The intermediate group D2d is an epikernel E(Td,e), since the 
totally symmetric representation occurs only once in the descent 
in symmetry Td —* D2d: 

Ti ~* D2d -* D2 (2) 
(e) (a, + b,) (a + a) 

Only one of the two e-components is invariant under the D2d 

operations. If that particular component is activated, the symmetry 
is lowered to D2d and not further down to D2. 

An arbitrary point in the two-dimensional (Q6, Q1) space is 
characterized by the kernel symmetry D2 (Figure 3a). A pure 
Q6 vibration corresponds to an elongation (compression) along 
the z axis (see Figure 2) and therefore to the epikernel symmetry 
D2/ (the superscript indicates that the S4 axis is along z). The 
presence of C3 axes in Td implies that equivalent D2d structures 
can be generated with the S4 axis along x or y. In the (Q6,QJ) 
plane, these equivalent structures correspond to Q1 = -21^2Q6 for 
D2/ and Q1 = Ti111Q6 for D2/, hence the triangular structure in 
Figure 3a. A point moving along the edges of this triangle cor-

(9) Melvin, M. A. Rev. Mod. Phys. 1956, 28, 18. 
(10) Ascher, E. J. Phys. C: 1977, 10, 1365. 
(11) Murray-Rust, P.; Biirgi, H-B; Dunitz, J. D. Acta Crystallogr., Sect. 

A 1979, A35, 703. 
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Figure 3. Perspective sections of the five-dimensional configuration space, 
resulting from e- and t2-type distortions. Principal extremal points are 
indicated. The phase choice exemplifies the case of a 3T1 electronic 
ground state in a tetrahedral d8 complex (see text, eq 29). (a) Qe space. 
Points on the Q0 axis have D2/ symmetry (cf. Figure 2). Similarly the 
axes Q, = VlQ0 and Q, = -VSQe define points with, respectively, D2/ 
and D2/ symmetries. An arbitrary point in the Qc plane only retains the 
D2 kernel symmetry, (b) Q11 space. In this case the symmetry of a 
configuration, represented by a spatial point, exactly corresponds to the 
symmetry of the site this point occupies on a tetrahedral body. As an 
example, activation of the three t2 vibrations to an equal extent corre­
sponds to a displacement along a threefold axis of the body in Figure 3b. 
All points on this axis have a Civ site-symmetry; accordingly such a mode 
generates trigonally distorted molecules, (c) Combined space showing 
all configurations which have at least C2 symmetry (cf. section VB). 

responds to the epikernel D2d at each vertex and at the middle 
of each side; everywhere else, it corresponds to the kernel D2. 

Somewhat more formally, Murray-Rust et al." introduced the 
concept of the "homomorphic image" of a group. Since the kernel 
K(G,T) is a normal subgroup of G, it can serve as a divisor of G, 
partitioning the elements of G into disjunct cosets of K. The results 
of the division G/K leads to the so-called factor group12 of G by 
K. In the specific case where K(Td,€) = D2, the factor group GjK 

(12) Baumslag, B.; Chandler, B. "Group Theory, Schaum's Outline 
Series"; McGraw-Hill: New York, 1968; p 122. 

Figure 4. The genealogy of the tetrahedral point group, including the 
subductional chains for the e and t2 representations.13 

Table I. Kernel, Epikernels, and Homomorphic Image 
Tetrahedral Representations 

r 
e 
t2 
e + t2 

K(Td, V) 

D2 

C1 

C1 

E(Td, i y 

D2, 

D-J'O2
1'C30

1C211C2C's 

1 for Relevant 

H(Td,K) 

Ciu 
Td 

Td 

"Dagger denotes epikernels that are characteristic of e or t2 sub-
spaces. 

= TdjD2 corresponds to C30 symmetry. Onto each element of C30, 
the homomorphism Td —• C30 maps four different elements of Td. 
In a sense then, the triangular C30 structure of Figure 3a reflects 
the Td symmetry in an attenuated way: it effectively incorporates 
the symmetry elements that were not yet considered in K. 
Therefore, C30 is called the homomorphic image of Td by D2; in 
general, the homomorphic image of G by K is denoted H(G,K). 

If the homomorphism under consideration maps G onto H, the 
epikernel subroups of G will be mapped onto subgroups12 of H. 
Therefore, the epikernels correspond to the different site sym­
metries of the homomorphic image. For instance, the site sym­
metries of the C3v structure of Figure 3a are C30 (origin), Cs 

(bisectors), and C1 (arbitrary point), corresponding to Td, D2d, 
and D2, respectively. 

As a general rule, kernels and epikernels are most easily ob­
tained upon inspection of a descent-in-symmetry sequence of the 
parent point group; a detailed knowledge of the actual repre­
sentational matrices is not required. Descent-in-symmetry se­
quences13 are exemplified in Figure 4 for the t2 and e repre­
sentations in Td. Each first appearance of the totally symmetric 
representation marks an epikernel or a kernel subgroup. The 
kernels, epikernels, and homomorphic images are also listed in 
Table I. For the e representation, Figure 4 incorporates the results 
of eq 2. For the t2 vibrations, the totally symmetric representation 
appears once in C20 and C10, twice in C,, and three times in C1. 
Therefore, the kernel AT(T^t2) = C1, and t2 vibrations are able 
to destory all available symmetry. As a consequence, the ho-

(13) The correlation tables corresponding to the different descent-in-sym­
metry chains have been listed for most symmetry groups by Wilson, Decius, 
and Cross in their monograph: "Molecular Vibrations"; McGraw-Hill: New 
York, 1955; pp 333-340. 
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momorphic image H(Td,C{) = Td; it can be represented by a 
three-dimensional tetrahedron as in Figure 3b. The center of this 
body, where Q( = Qn = Q^ = 0, corresponds to the undistorted 
tetrahedron. Activation of only one vibrational Qh mode, say g f, 
lowers the site symmetry to C20 (see also Figure 2); therefore all 
the points of the Q$ axis correspond to C 2 / symmetry (the su­
perscript refers to the conserved symmetry axis). Activation of 
the three t2 vibrations to an equal extent generates a C30 

molecule—as can be verified from the site symmetry of a vertex 
point. Figure 4 shows that C20 and C30 are both "maximal 
epikernels", since only one specific Q11 combination has T1 sym­
metry. In Cj on the other hand, two independent linear combi­
nations of the Qt2-coordinates are invariant with respect to the 
remaining plane of symmetry: Cs (corresponding to the points 
on the edges of the tetrahedron) is a "lower ranking epikernel". 
An arbitrary point in the three-dimensional Qh space corresponds 
to the C1 kernel symmetry. From Figure 3b, it is also easy to 
visualize why C2 cannot be an epikernel E(Td,t2). Indeed, in a 
tetrahedron, any point with C2 symmetry is situated on a site with 
higher C20 symmetry. 

Since the present treatment is concerned with the simultaneous 
activity of the e and t2 modes, Table I also lists the kernels and 
the epikernels of the five-dimensional reducible representation (e 
+ t2). If the descent in symmetry generates invariances, char­
acteristic of only one of the two vibrational types, the epikernels 
are marked with a dagger. For instance, from Figure 4, it is clear 
that D2d is an (e + t2) epikernel because of e vibrations only— 
hence the notation Z)2/. On the other hand, C20 is not marked 
by a dagger. Although C20 is an epikernel of both the t2 and the 
(t2 + e) representation, in the latter case, T1 results from t2 and 
from e. Therefore, the totally symmetric vibrations in C20 can 
in general be linear combinations of Q12 and Q1., and as such they 
are not characteristic of the t2 surface. In this sense, C20 is the 
maximal epikernel of the combined (t2 + e) representation. In 
five-dimensional (Q1., Qt2) space, only cross sections of the relevant 
body can be shown as Figure 3, parts a and b. Another useful 
subspace, shown in Figure 3c, will be discussed in the next par­
agraphs. 

B. Symmetry of the Electronic Ground States. Within a given 
\Qa\ space, the symmetry lowering is such that only the kernel 
and the epikernel symmetries are accessible by Jahn-Teller dis­
tortions. If we first limit ourselves to the two-dimensional space 
of the e vibrations (Q6 and Q1), a triply degenerate T1 state be­
comes 

T 1 - A2 + E — B1 + B2 + B3 (3) 
Ji) (D2d) (D2) 

In what follows, capital letters will be used for state symmetries, 
while lower case symbols designate the vibrational normal co­
ordinates. The energy level splitting along the Q6 axis (as shown 
in Figure 5) can be discussed by using a force concept approach.14 

Indeed, a molecule in a degenerate T1 state can be said to be 
subject to a force 

(T l f | d#/3g t t |T„) 0 * 0 (4a) 

corresponding to the slope of the energy curve in the high-sym­
metry origin; the subscript t in eq 4a stands for one of the three 
T1 components and ft symbolizes the general vibronic Hamil-
tonian. 

It is also well-known that the sum of the forces in the origin 
is zero 

Z(Tu\M/dQa\Tu)o = 0 (4b) 

where t runs over the three T1 components. Therefore, the slope 
of the A2 component is twice as steep as the slope of the E com­
ponent, and A2 will be characterized by the deepest minimum. 
Also, since the E component is doubly degenerate, it remains JT 
unstable. Within the space of the e vibrations, Q, will be activated, 
splitting E into B2 + B3. From Figure 3a, it can be inferred that 
the energy of the B2 state drops along the Q1 coordinate, until the 

(14) Clinton, W. L.; Rice, B. J. Chem. Phys. 1959, 30, 542. 
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Figure 5. Potential energy surface of a T1 state as a function of a 
displacement along the Q1 coordinate, defined in Figure 2. The Q6 
distortion lowers the symmetry from Td to D2/ (cf. Figure 3a). The T, 
level thereby splits into two components, A2 and E. In the origin the slope 
of the A2 curve is twice as large (with opposite sign) as the slope of the 
E curve. In consequence the A2 curve is characterized by the deepest 
minimum. In this example the extremal position, Q6, corresponds to an 
elongated tetrahedron (Q6 > 0), indicating a positive linear coupling 
element (Vc > 0, see eq 12a). 

D2/ structure is reached, where B2 becomes A2. Similarly B3 

becomes A2 in D2/. The three equivalent D2d minima of A2 

symmetry are situated at the bottom of three intersecting para­
boloids. 

The energy minima of the Qt space are thus situated in the 
epikernel (D2d) rather than in the kernel (D2) points. This is a 
manifestation of a rather general principle, which will be referred 
to as the "epikernel principle". A rationalization of this principle 
can again be obtained most readily from the force concept ap­
proach. The JT theorem itself is based on the consideration of 
the forces in a highly symmetric degenerate ground state; it 
predicts the symmetry-destroying coordinates moving the system 
into another point of configuration space, characterized by a lower 
symmetry and a nondegenerate ground state. The epikernel 
principle on the contrary is based on the consideration of the forces 
operating on the system in these lower symmetry points. Consider 
a point situated on the Q6 axis of Figure 3a or Figure 5; the 
molecular ground state A2 is in principle subject to forces parallel 
and perpendicular to the Q6 axis. Now 

(A2\d?f/dQt\A2) = 0 (5) 

since Q1 is a basis for the b[ representation of D2/, while 

(A2\d»/dQe\A2) (6) 

can have any value, Q6 being totally symmetric in D2/. Therefore, 
a D2J structure will experience only totally symmetric distortion 
forces. On the other hand, the forces on arbitrary structures in 
the Q1 plane (D2) will not be characterized by any type of re­
striction; they can adopt arbitrary values and directions. 

Consequently, it is quite possible that all extremal points such 
as absolute minima and saddle points will be situated in epikernel 
points. Although it is not strictly impossible that some extremal 
points would also be found in the kernel symmetry, such a situation 
would correspond—in a sense—to the occurrence of accidental 
degeneracies. 

For the t2 vibrations, Table I shows that the kernel is C1, while 
the epikernels are C30, C20, and C5. One has 

A2 + E 

T1 A' + 2A" — 3A (7) 

( 7 - t f ) \ / (Cs) (C1) 

A2 + Bi + B2 

Application of the same principles reveals that extremal points 
of the molecular ground state can be expected for the electronically 
nondegenerate states of the high-symmetry epikernels C30 and C20. 
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Indeed, Figure 4 shows that the three t2 vibrations are Ca1 + e) 
in C31, and (a, + bj + b2) in C20; now obviously 

for Ci0 

(X\89i/dQe\X) = 0 

for C20 

(x\dft/dQbl\x) = (xicW/aegx) = o (8) 

where X stands for A2 in Civ or for any C211 state. As a conse­
quence, if the system described by X is in a C31, or C21, point, there 
can be no forces driving it into the surrounding zone of lower 
symmetry (see also Figure 3b). If the system is in a Cs point, there 
can be no forces pushing it into the surrounding C1 zone, but there 
can—and in general there will—be forces driving it toward Cio 

or C21, points. Therefore, as far as the minima and the saddle points 
are concerned, not only are the epikernels preferred to the kernels, 
but the maximal epikernels are preferred to the lower ranking 
epikernels. 

In the five-dimensional (Gt2-Ge) space, the maximal epikernel, 
characteristic of the combined vibrations, is C20 (Figure 4, Table 
I). Although C2 and Cs points can certainly correspond to crests 
or valleys, the (t2 + e) extremal points are most likely to be found 
in C20 structures. 

C. Epikernel Principle. In summary, the following principle 
can be formulated: Extremum points prefer epikernels to kernels; 
they prefer maximal epikernels to lower ranking epikernels. More 
specifically, this means that as a rule stable minima are to be found 
with structures of maximal epikernel symmetry; there can be no 
forces whatsoever moving the molecule out of this symmetry, 
whereas in all the points of its immediate neighborhood, including 
the kernel points and the lower ranking epikernel points, the forces 
can, and will in general, be non-zero. Therefore, we should expect 
the symmetry of the stable minima to be as high as possible. This 
is a rather paradoxical conclusion, especially when compared to 
the Jahn-Teller theorem, which is a symmetry reducing theorem. 
In fact, there is no contradiction; both theorems are compatible, 
and even complementary. The Jahn-Teller theorem states what 
kinds of situations are unstable, whereas the epikernel principle 
states in what directions a stabilization is most likely to take place. 

In 1894, Pierre Curie15 formulated the following principle: The 
symmetry characteristic of a phenomenon is the maximal sym­
metry compatible with the existence of the phenomenon. This 
is certainly somewhat similar to the epikernel principle, although 
it was formulated long before the advent of quantum mechanics, 
and obviously Curie was not aware of the existence of the 
Jahn-Teller effect. Yet, in certain papers10 on phase transitions 
in solid-state physics, the appearance of unexpected high sym­
metries is claimed to be related to the Curie principle. We feel, 
however, that the formulation of the Curie principle is too vague 
to be a basis for an operational rule. In order to designate the 
effect we have been discussing so far, we prefer to use the term 
"epikernel principle". 

III. Opik-Pryce Perturbational Approach 
In the previous section, certain high-symmetry epikernel sub­

groups of Td were shown to be of particular relevance in discussing 
the stable ground-state geometries. In principle, these relevant 
configurational subspaces can be scanned by using a number of 
different theoretical methods, e.g., extended Hilckel theory, ligand 
field theory, Hartree-Fock calculations, etc. If one is especially 
interested in the general shape of the potential surface a cum­
bersome gridwise scanning of the configurational space is un­
necessary and can conveniently be replaced by the Opik-Pryce 
perturbational approach.5 

Within this approach, the general vibronic Hamiltonian 

n = z(^-)Qa + ZZl-( ~^)QaQ? + - (9) 
*\dQa/0 a fl2\dQadQi3jo 

(15) Curie, P., Oeuvres de Pierre Curie, Gauthiers-Villars, Paris, 1908, pp 
118-141. 

can effectively be limited to the five normal coordinates discussed 
in the previous section: Q6, Q1, Q(, Qn, g f . Under these as­
sumptions, eq 10 represents the (3 X 3) Hamiltonian matrix, 
including all quadratic terms: 

H = VhUQ6
1 + Q1

2) + V2K1(Q? + Q? + Qf)]J + [V1Q1 + 

U1AQ1
2 - 1AQe2) + Ll-AQi2 + 1AQf + 1AQf)]C, + 

[VcQ< + L1Q6Q1 + L{-[S/1/A) Qf + (\/3/4)e,2)]c( + 

[vtQi + X1QnQf + W[AQeQi + ( v V 2 ) ^ ) ] 0 * + 

[^G, + ̂ tGtGr + w[ 1AQeQ, ~ (vV2)&G,)]c, + 

[V1Qi + X1Q1Qn + WQ^Qe]Cf (10) 

The basis of this matrix representation is \Tlx), |T^>, |Tiz) or IT24), 
|T2„>, |T2f>, where the subscripts refer to Griffith's standard 
bases;16 the notation is consistent with ref 17. The six parts of 
eq 10 correspond to the six representations and subrepresentations 
contained in the symmetry product [T X T]. J is the (3 X 3) unit 
matrix, and the C matrices, containing the appropriate coupling 
coefficients,8'17"20 are listed in Appendix A. All other quantities 
in eq 10 denote the typical vibronic coupling constants. Their 
definition can be inferred directly from the equation: Kt and Kx 

are the harmonic force constants; Ve and V1 are the linear JT 
interaction elements; W is the bilinear element arising from the 
coupling between t2 and e vibrations; Lt, Lx, and Xx refer to 
quadratic coupling constants that result from the nontotally 
symmetric parts of the e X e and t2 X t2 symmetrized direct 
products. 

The secular equation of H 

Ha, = Xja,- (Ha) 

yields three roots (i = 1, 2, 3), where a, is a column vector con­
taining one of the normalized eigenvectors of H; X, is the associated 
eigenvalue. Each root corresponds to a sheet of the adiabatic 
potential surface in five-dimensional space. Although trigono­
metric solutions of the 3 X 3 eigenvalue problem are available, 
the general expressions are highly untractable.21 Therefore, 
following Opik and Pryce,5 we will focus our attention on the 
derivation of certain salient features, such as extrema and principal 
axes of curvature, that specifically mark the topology of the 
surface. Extremal points can be obtained by imposing the sta­
tionary condition 

a = 8, t, I, v, f; M . • " 1 ( l l b > 

upon the solutions of eq 11a. Since the Hamiltonian is quadratic 
in Qa, eq 1 lb yields a system of five equations that are linear in 
the normal coordinates. Explicit formulas are given in Appendix 
B. These equations can be used to derive the extremal positions 
of Qa, say Qa, as a function of the a,- components. In principle 
the eigenvector can then be found by substituting these Qa 

functions in eq 11a and solving the outcoming secular equations. 
Again highly untractable expressions result. However in many 
cases the epikernel principle allows us to find a,- at the extrema 

(16) Griffith, J. S. "The Theory of Transition-Metal Ions"; Cambridge 
University Press: New York, 1961, Tables A5 and A16. The standard basis 
choice in Td is identical with the basis choice in the isomorphous group of 
rotations in an octahedron. 

(17) Bersuker, I. B.; Polinger, V. Z. Phys. Lett. A 1973, 44A, 495. Sov. 
Phys.-JETP (Engl. Transl.) 1974, 39, 1023. 

(18) Griffith, J. S. "The Irreducible Tensor Method for Molecular Sym­
metry Groups"; Prentice-Hall: Englewood Cliffs, NJ, 1962. 

(19) Ceulemans, A.; Beyens, D. Phys. Rev. A 1983, A27, 621. 
(20) In agreement with the sum rule in eq 4b, the Clebsch-Gordan coef­

ficient matrices C r r in Appendix A are seen to be traceless. In the origin of 
a JT surface several other interesting sum rules apply as well, all of which 
derive from the orthonormality properties of the Cp7 matrices. 

(21) Liehr, A. D. Prog. Inorg. Chem. 1962, 3, 281-314f; 1962, 4, 455-540. 
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immediately from symmetry considerations. Subsequently, also 
the energy can be calculated from eq 1 la by substituting the same 
a, coefficients as well as the Qa values from eq l ib . 

Equation 11, parts a and b, has been solved analytically by 
Bersuker and Polinger,17 under the assumption that Lt, Lx, and 
Xx vanish, and by Bacci et al.,22 omitting W. In a study of impurity 
centers in octahedral lattices, the latter authors23 also analyzed 
more elaborate hamiltonians by means of numerical techniques. 
Additional terms, due to the effect of the totally symmetric mode 
and anharmonic restoring forces were thereby taken into con­
sideration. Accounting for the alg mode is indeed indicated in 
octahedral symmetry, where the eg mode involves a radial de­
formation, whereas the t2g mode is purely bending. In tetrahedral 
symmetry, on the contrary, one is concerned with two quasi-de­
generate bending modes. Therefore, in the present case, differ­
ential perturbations from the a! stretching can probably be dis­
regarded. On the other hand, there is no a priori reason to omit 
any of the quadratic constants, and we will need expressions that 
are slightly more general than the ones obtained previously.17'22 

IV. Extrema of the T X (t2 + e) Equation 

Using the ideas of the previous sections, we will present par­
ametric expressions for the solutions of eq 10 and 11. First we 
will look for solutions of the T X (t2 + e) problem that remain 
characteristic of the separate coupling T X t2 or T X e—that is, 
for the subgroups marked with a dagger in Table I. In view of 
the epikernel principle, we will limit ourselves to the epikernels 
D2d (for T X e) and C3x, (for T X t2). These solutions are well-
known22 and can also be derived without difficulty in the 
framework of the present methodology. In order to find the \D2d 

minimum, it is sufficient to realize that one of the three equivalent 
eigenvectors a ^ is determined by ax = &y = 0; az = 1. Indeed, 
by activating only Q6, the A2 ground state (in D2/) is given by 
|Tlr>. Inserting these a components into the equations of Appendix 
B, one obtains the Qa expressions 

(Qe,Q,Q(^Qs)Du = 
K,+ L1 

and, using eq 11a, it follows that 

Xn = 
2(K, + Lc) 

(10 0 0 0 ) (12a) 

(12b) 

For Civ, one similarly obtains, considering an A2 ground state, 
say &x = ay = az = 1/V3 

2V 
(Qs,Q.Q(,Qv,Q?)c}l = ^ \v(0 0 1 1 1 ) (13a) 

3 A:t - AXJ 

2Vj 
Cj» 3Kt - 4X1 

(13b) 

In eq 12 and 13, we introduce only one dihedral (D2J) and one 
trigonal (C2p) point. The other equivalent and equienergetic 
solutions can be obtained by applying the tetrahedral symmetry 
operations on the coordinates of the extremum under consideration. 
In general, the number of equivalent configurations with a given 
subgroup symmetry equals the quotient of the group orders.24 

Hence there are | Td\/\D2^ = 3 equivalent dihedral minima (see 
Figure 3a) and 1^1/IC30I = 4 equivalent trigonal minima (see 
Figure 3b). 

Next in looking for solutions that are truly characteristic of 
the combined Hamiltonian, one has to consider the symmetry 
adapted state functions in the maximal epikernel group C211. If 
one selects C2 / , one obtains25 

(22) Bacci, M.; Ranfagni, A.; Fontana, M. P.; Viliani, G. Phys. Rev. B: 
Solid State 1975, U, 3052. 

(23) Ranfagni, A.; Mugnai, D. Bacci, M.; Montagna, M.; Pilla, O.; Viliani, 
G. Phys. Rev. B: Solid State 1979, 20, 5358. 

(24) Fritzer, H. P. NATO Adv. Study Inst. Ser., Ser. B: 1979, 43, 
179-217. 

IA2) = |T l r) 

|B2> « ( 1 A / 2 ) [ | T „ > + |T„)] 

|B,> - (1 /Vi ) [ IT 1 , ) - IV] (14) 

The |Tlz) function describes a nondegenerate state in D2/ as well. 
As such it is not characteristic of C2J but rather of D2/, containing 
C2J as a subgroup: application of the matrix equation of Appendix 
B leads to eq 12 as the only solution. This result is compatible 
with the epikernel principle, since all t2 vibrations are nontotally 
symmetric in D2d (see Figure 4). On the other hand, the B1 and 
B2 functions are both genuine C20 components: in D14, they would 
correspond to the degenerate JT unstable E-state. Using the 
eigenvector ax = 1/V2, ay = ±l/-v/2, az = 0 (eq 14), one obtains 

(Q8,Q<,Q(,Q„Qt)c» = 

/ -V*KX'+ 

\ 2 (W 
+2WV1 

,0,0,0, ± 
2K, 

* C = 

W2)' ' 2(K1 

V2K1' + AV1
2K1.' -AWVtVx 

HKJKx' - W2) 

,'Vi ~ V*W \ 

c'Kt' -W2)) 
(15a) 

where 

A.p — / C F Uv 

(15b) 

(15c) 

The upper sign in ay (the B2 state of eq 14) corresponds to the 
upper sign in Q; (eq 15a); the B1 state of eq 14 corresponds to 
the lower sign in eq 15a. There are 17^1/IC20I = 6 equivalent and 
equienergetic solutions of C211 symmetry. Within the space of the 
t2 vibrations, they correspond to the middle of the six edges in 
Figure 3b (two on each coordinate axis); activation of the ap­
propriate e vibration will move the system into the five-dimensional 
(e + t2) space but will not otherwise affect the general picture. 
The two equivalent structures on both sides of say the Q^ axis are 
seen to correspond to C2J symmetry. From eq 15 it follows that 
the two equienergetic structures correspond to B1 and B2, re­
spectively. In Figure 3c, these structures are represented by two 
points situated in the (Q6,Q{) plane above and below the (£2s»2<) 
plane. Four more C2v points can be obtained by symmetry ad­
aptation to C2J and C2 / . If L1. = Lx = 0 (and K/ = Kr in eq 
15c), eq 15 reduces to the results obtained by Bersuker and Po­
linger.17 

It is interesting to observe that the C2x solution for the separate 
(T X t2) problem immediately appears as a particularization of 
Eq 15b: 

W%h' 
Vx

2 

2Kx - Lx 

(16) 

From a comparison of eq 13b and 16, it can be concluded that 
under normal conditions (where Lx, Xx « Kx) the absolute 
minimum of (T X t2) will have trigonal symmetry: XCjc < Xc2/"'2. 
For other—more exceptional—parameter values, C211 could become 
an absolute minimum in the Qt2 space. This would not be in 
contradiction to the epikernel principle, since both C20 and C3t, 
are maximal epikernels:10 they belong to different branches in 
the hierarchical chain of tetrahedral subgroups (Figure 4). 

The description of stationary points corresponding to the lower 
ranking epikernel symmetries C2 or Cs is more difficult, since 
symmetry adaptation does not project unique eigenfunctions. For 
instance a basis for C2 might be written as follows: 

|A> = IT11) 

IB); = a|Tlx> + V l - « 2 IT1: (17) 

|B)2 = V l " «2|Tix) - a f IV 

The |A)-component is not characteristic of diagonal symmetry. 
Hence, two possible starting eigenvectors correspond to ax = a, 

(25) In C2I1', B1 is symmetric with respect to the axy plane while 
symmetric under <jxf (see Figure 1). 

B2 is 
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Table II. Normal Mode Analysis of the Principal Extremal Points on a T1 X (t2 + e) JT Surface0 

extremal 
point \X) IJO normal modes 

noninteracting modes and 
associated force constants 

possible 
transition 

vectors of IX) 

D 2d IA1) \E) a j b , ; b 2 e 

L4J> IE) e;a,e 

I5,> IB,), U2) a ^ j a ^ b j 

IB2) IB1), L42> a^a^b, 

a, Kt-*/sXt 

a , IAV+AV [CAV-AY)1 1 
J—r-*l—r-+wll 

a, i KJ + AT1 

none 

a 2 ,b 2 

a2A 

b 2 AT1. + i / 4 I t + Xt 

a IAO and IK) denote, respectively, ground-state and excited-state T,-components. The subgroup representations of the e and t, normal 
modes have been obtained from Figure 4. The noninteracting modes comprise the normal modes that do not yield off-diagonal matrix ele­
ments between IAO and 17). The final column lists the possible transition vectors of IAO. These are nondegenerate and nontotally symmetric 
normal modes, that in addition are contained in the direct product of the IAO and IJO representations (cf. text section VA). 

a, = ±(1 - a2)1/2, and az = 0, containing a as an unknown. 
Similarly, adaptation to a diagonal plane of symmetry, say Cs

xy 

(Figure 1), yields 

|A') = (1/\Z2)[|TU> -IT 1 , ) ] 

|A">i = /3[|Tlx> +IT 1 ; ] +^/1-2/32IT1 , ) 

|A">2 = \ / l / 2 - 0 2 [IT1,) + IT1,)] - fiy/1 IT12) (18) 

Again the |A') component hides a higher symmetry. The C, 
extremum will therefore always be antisymmetric with respect 
to the reflector plane. The two possible starting eigenvectors can 
be chosen as &x = a, = j3, and az = ±(1 - 2/32)1/2. 

Both for C2 and C1, the coordinates of the stationary points are 
still (rather complicated) functions of a or /3. Substitution in eq 
1 la leads to root-determining equations which in practice can only 
be solved by numerical means. Reported computer simulations17'23 

reveal that neither C1 nor C2 points ever will become absolute 
minima, which is in complete agreement with the epikernel 
principle. 

At the end of this section, it is well to stress that the validity 
of the reported expressions is limited to the description of the 
potential in the neighborhood of the tetrahedral origin. It cannot 
be expected to describe the whole surface of angular deformations 
and should therefore be restricted to typical Jahn-Teller problems. 

V. Topology of the Electronic Energy Surfaces and Chemical 
Reactivity 

In the previous sections, we have considered the symmetry and 
the nuclear coordinates of the extrema of the potential surface 
(eq 12-18); we have also discussed the symmetry and the energy 
of the corresponding electronic states. 

Of all the conceivable extrema, however, we are only interested 
in the complete minima (where the energy is minimal with respect 
to all (five) coordinates Q0) and in the saddle points (where the 
energy is minimal with respect to four Qa and maximal with 
respect to one Q0). 

A. Normal Mode Analysis. In order to discover the nature of 
the extremum, it is useful to go back to the Opik-Pryce procedure.5 

The Hamiltonian of eq 10 can be reexpanded around the extremal 
points (D2J, C3t), C2v) and a new local force constant matrix can 
be constructed. Diagonalization of this matrix yields the force 
constants as eigenvalues and the principal axes of curvature as 
the associated eigenvectors. A negative force constant indicates 
that the cross section of the surface along the corresponding axis 
of curvature resembles an inverted parabolic well. Therefore, if 
only one force constant is negative, the stationary point is a saddle 
point. Following Mclver and Stanton26"28 the typical eigenvector 

(26) Mclver, J. W.; Komornicki, A. J. Am. Chem. Soc. 1972, 94, 2625. 
(27) Mclver, J. W.; Stanton, R. E. J. Am. Chem. Soc. 1972, 94, 8618. 

of a saddle point will be called the transition vector. 
In ref 28 Stanton and Mclver have proposed a series of theorems 

that govern the transformation properties of the transition vector 
and allow to determine its symmetry species in the transition-state 
point group. In line with the present methodology, it is interesting 
to observe that these theorems on the symmetry of the transition 
vectors can be reformulated in a very compact way by using the 
kernel concept: let G be the symmetry group of the transition 
state and S C G the symmetry group of the reacting molecules 
in the neighborhood of the transition state. Then the symmetry 
of the transition vector is given by the real one-dimensional 
representation T of G, defined by 

K(G,T) = S (19) 

Indeed, the transition vector (T) carries the system from G into 
one of its subgroups S, where T necessarily has become totally 
symmetric. As an example, consider a transition-state symmetry 
G = C2P- A symmetry lowering to S = C2 will require a transition 
vector with a2 symmetry, since a2 is the only (non-T,) repre­
sentation of C2„ that conserves C2 

*( C21Aa2) = C2' (20) 

The practical significance of eq 19 is the following: a necessary 
condition for an extremal point with symmetry G to be a possible 
saddle point on a given S-G-S pathway is that the representations 
of its normal modes contain the symmetry species of the transition 
vector (T), as determined from eq 19. If not, the proposed 
pathway is topologically forbidden. 

In applying this approach to a JT surface a second specific 
condition emerges. Indeed the barycenter of the three T com­
ponents has to be on a positively curved surface since in a typical 
JT problem the totally symmetry force constants are the dominant 
parameters. Hence, a negative curvature in a stationary point 
must be compensated by a positive curvature in the excited 
partners at that point. As a consequence, saddle points are only 
expected if the ground-state |X) and the excited T components 
IY) repel each other4,5,22 due to the non-zero value of the matrix 
element (X\d7£\dQa\Y). This leads to an additional symmetry 
restriction: a topologically allowed pathway on a JT surface can 
only have a saddle point if the symmetry species of the transition 
vector is contained in the direct product of the ground- and ex­
cited-state representations of the saddle point. 

Both conditions prove to be valuable heuristic tools to assign 
possible saddle points. Table II summarizes the results of a normal 
mode analysis in the principal stationary points: Dld, C30, and 
C20. Several typical features of this table are noteworthy and will 
be discussed in some detail. 

(i) A C30 structure does not contain nontotally symmetric and 
nondegenerate normal modes and hence, according to the 

(28) Mclver, J. W.; Stanton, R. E. J. Am. Chem. Soc. 1975, 97, 3632. 
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Scheme I 

r *yz r v r z r *y r *yz 
^3/ 0S ^Zr 0S ^3 

I A 2 > IA"> IB2> IA"> IA2> 

Mclver-Stanton rules,28 cannot correspond to a saddle point. This 
is in agreement with the topology illustrated in Figure 3b. Three 
equivalent pathways are seen to originate from C311. In contrast 
the nondegeneracy of a saddle point transition is compatible with 
the existence of at most two equivalent pathways: one path moving 
uphill from reactant to saddle point and one path moving downhill 
from saddle point to product. 

(ii) In D2J two pathways are topologically alowed, corresponding 
to nondegenerate b, and b2 normal modes. 

K(D2M = D2 (21a) 

K(D1M = C20 (21b) 

However the bi and b2 representations are not contained in the 
direct product of D2d ground- and excited-state components A2 

X E = E. As a result these topologically allowed modes cannot 
be expected to give rise to negative curvature and therefore di­
hedral saddle points must also be rejected. 

(iii) Another interesting feature is exemplified in the case of 
C2V extremal points. If the transition vector has a2 symmetry the 
C2I, extremum is a transition state on a C2 path, since an a2 

vibration destroys both symmetry planes, conserving only the 
twofold rotation (eq 20). If the transition vector has b, or b2 

symmetry, the C2x structure must correspond to a point on a C, 
path. Moreover Table II shows that the transition vector and the 
transition state have opposite symmetry with respect to the two 
planes of symmetry: b2 for |B,> and b[ for |B2). Therefore the 
C2x transition state will be correlated to an antisymmetric |A"> 
Cs state. 

(iv) For each noninteracting mode, one expects the ground state 
to be on a surface with positive curvature. Table II shows par­
ametric expressions for the corresponding force constants. In all 
cases, these constants are seen to be positive for a reasonable range 
of parameters. 

In summary, group theory shows that the symmetry of a saddle 
point in the present case can at most be C20; lower symmetry saddle 
points are possible (though not derivable from group theory) for 
certain specific parameter combinations and at certain specific 
points in configuration space. 

In principle, the three maximal epikernels, D2d, C30, and C20, 
can all give rise to complete minima. Whether or not they will 
do so, and which one of the complete minima will be the absolute 
minimum, depends on the actual value of the vibronic constants 
figuring in the energy expressions eq 12b, 13b, and 15b. 

B. Allowed vs. Forbidden Reactions. From the previous sections, 
it follows that three possible absolute minima should be considered: 
C30, D2J, and C20. In some cases, several minima of different type 
and symmetry have been supposed to coexist;23,29 we will limit 
ourselves to the simpler case where one minimum is definitely 
lower than the other two, and where it corresponds to a specific, 
experimentally observable structure. The topological routes we 
will consider involve transitions between equivalent minima (for 
instance between the four equienergetic minima in case of a C30 

structure). Experimentally, such processes can be observed by 
using isotopomers. 

(i) The connections between the C30 points can immediately 
be inferred from Figure 3b. One edge of the tetrahedron can be 
represented as in Scheme I. Also included in the scheme are the 
electronic ground states of the stationary points, as obtained from 
the foregoing analysis. When the character convention specified 
in ref 25 is used, the transition vector in the C20

1 saddle point has 
bi symmetry (conservation of the cxy plane). From Table II, it 
follows that the C 2 / ground state must be |B2). This state is 
antisymmetric with respect to axy, and therefore the process of 
Scheme I takes place on the ground-state surface: Scheme I 

(29) O'Brien, M. C. M. Phys. Rev. 1969, 187, 407. 

Scheme II 

D2d—C2 C2v C2 D2d 

IA2> IB> IB| or 2 > IB> IA2> 

Scheme III 

Z Z Z Z Z 

C2v C 2 v—D 2 l t C2v C2v 

IB2> IB2> IA2> IB-I=*- IB,> 

represents an allowed reaction.30 Even if the actual reaction path 
would partially extend into the (Qs,Qt) space, the conclusion on 
the allowed nature of the reaction would obviously not be modified. 

(ii) The reaction path from one Dld minimum to another one 
can be visualized from Figure 3a. Within the space of the e 
vibrations, this transition is forbidden. Indeed, as discussed in 
section HB, the symmetry of the D2d ground state is A2. But in 
the intermediate D2 structures, the symmetry of the ground state 
becomes B1, B2, or B3, depending on whether the point of departure 
is D2/, D2J, or Z)2/, respectively. This leads to the well-known 
situation of three intersecting potential wells.6b 

In order to render the process allowed, symmetry lowering 
beyond D2 is required. This symmetry lowering is only feasible 
through extension of Figure 3a into the t2 space,29 leading either 
to Ci or to C2. In view of the epikernel principle, C2 will be 
preferred, and from section IV, the ground state will be |B). 
Figure 3c illustrates how the transition from D2/ to D2/ can be 
made possible by activation of g f: the three coordinates Q9, Q1, 
and g f are totally symmetric under C2. They define a three-
dimensional section of the (Q11 + Qe) space, containing all 
structures which have at least C2 symmetry. An allowed reaction 
path can then be represented by a curved line between D2/ and 
D2/, situated above or below the (Qe,Q,) plane. Such a curve will 
cross the (QS,Q{) plane, which is characterized by C2J symmetry: 
from section IV, the corresponding ground state will be B1 or B2, 
depending on whether g f is positive or negative. This state will 
be the transition state on the rearrangement path; the transition 
vector has a2 symmetry (eq 20). The appropriate Scheme II is 
shown below. Clearly in this scheme, symmetry is being conserved 
and there exists an adiabatic path connecting both potential wells. 

(iii) In order to discuss the C20 absolute minima in the T X (t2 

+ e) problem, it is useful to consider first the C20 points in the 
(T X t2) case. Figure 3b shows that the six equivalent C20 points 
form the corners of an octahedron, inscribed in the tetrahedron. 
As opposed to the D2J or C30 structures, where only one reaction 
path had to be considered, we have to allow now for two non-
equivalent routes: C 2 / *» C2 / , connecting opposite vertices of 
the octahedron, and C 2 / *• C2/ , connecting adjacent vertices (p 
and q stand for x, y, or z; p ^ q). This picture remains essentially 
valid in the five-dimensional (t2 + e) space, where the activation 
of the appropriate e vibration yields an additional degree of 
freedom without reducing the symmetry. It will be shown in the 
subsequent paragraph that C 2 / ** C 2 / is a forbidden process, 
whereas C 2 / ** C 2 / is an allowed process. 

C. Rearrangements of the C2v Structures, (i) Consider first 
the rearrangement C2J

1 ** C2/ , when all the symmetry elements 
are conserved; within the t2 space (Figure 3b), this corresponds 
to a movement of the configurational point along one of the 
coordinate axes, say g f (for C2J), and passing through the origin 
of the figure (Td symmetry). However, each point in Figure 3b 
corresponds to a two-dimensional (Qe,Qe) plane in the (t2 + e) 
space. Therefore, if extension into the Qt space is allowed—while 
conserving the C20 symmetry—the origin of Figure 3b will in 
general correspond to D2J symmetry. In the example of C2J, the 
appropriate e vibrational coordinate is Q0, and the reaction actually 

(30) The normal mode analysis of T2 ground-state components yields 
similar conclusions. As an example the C21, transition state is now shown to 
have the same symmetry as the C, path transition vector: b, for |B, > and b2 
for|B2). Hence, the transition state correlates with I A') C1 states. But now 
the C3„ ground-state symmetry also has changed from |A2) to IA1), and 
Scheme I remains an electronically allowed process. 
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Scheme IV 

IB2> IB> IA2> IB> IBi> 

Scheme V 

z 2 y or Jf 2 1 
C2^ C2 D^ C2 C2 „ 

IB2> IB> IA 2 > IB> IBi=-

takes place in the two-dimensional (Q^Qe) space (Figure 3C); it 
can be represented by Scheme III. It has been shown in section 
IV that the electronic ground states of C 2 / are IB1) or |B2), 
depending on the sign of g f . Therefore, in any case the 
ground-state symmetry will be different on both sides of the 
transition state: a transition vector cannot be properly defined 
and the reaction is forbidden. The same conclusion can also be 
found by realizing that IB1) and |B2) cross in the excited de­
generate |E) state of D2/; they are obviously not connected to 
the D2i ground-state surface (which has A2 symmetry). 

(ii) The forbidden character of he C 2 / ** C 2 / reaction is 
maintained even if the symmetry of the reaction path is lowered 
to Cj. Indeed, for both mirror planes of C2x, the B1 and B2 states 
are characterized by opposite behavior, and a ground-state cor­
relation is impossible. 

(iii) Since B1 and B2 have the same character (-1) for C2
1, they 

both give rise to an antisymmetric |B) state, and therefore a C2 

path should be a more likely route for an allowed reaction; this 
path should be situated entirely in the three-dimensional subspace 
of Figure 3c and the transition state must be situated in the (0(,Q1) 
plane, more specifically in one of the epikernel D2^ points. There 
are two possibilities and either Scheme IV or Scheme V applies. 
Since A2 is symmetric under C2 in D2/, whereas B is antisym­
metric, the ground state of the C2/ structure is necessarily con­
nected to an excited state of D2/ and not to its |A2) ground state: 
the reaction is electronically forbidden. Moreover according to 
eq 21 Scheme IV represents a topologically forbidden pathway. 
In Scheme V, the reaction is electronically allowed, since A2 is 
antisymmetric under C2 in D2/ °r *. But the Mclver-Stanton 
rules prevent the D2/

or * structures from being saddle points on 
a C2 route: indeed the £>M group does not contain a nondegenerate 
representation V for which K(D2/ °r x , r ) = C2

2. The absence of 
dihedral saddle points is in agreement with the conclusions of Table 
II. 

(iv) The only remaining possibility for the C 2 / ** C 2 / reaction 
is to proceed via an asymmetric C1 path. In that case, the epikernel 
principle requires the saddle point to be C2 or Cs. However, the 
mirror plane or the rotation axis cannot be one of the symmetry 
elements of the C 2 / structure. Indeed, if it were, the transition 
vector would necessarily be antisymmetric with respect to that 
particular symmetry operation (it would for instance be a vector 
perpendicular to the mirror plane). But the Mclver-Stanton 
rules28 require that the transition vector be symmetric with respect 
to any symmetry operation that leaves either reactants or products 
unchanged. Therefore, the saddle point can only be characterized 
by a C2 or a mirror plane that does not belong to the C 2 / structure 
itself. As a specific example, a C" plane might conceivable be 
a saddle point for the C2/ ** C2J rearrangement (Figure 3b). But 
obviously any C2/ - C/z valley should be equivalent to a corre­
sponding C/z - C2/ valley; therefore, the C1 path connects C 2 / 
to C2 / , not to C2 / . The situation is also illustrated in Figure 6, 
where the C1 path is projected in the (6j,fi{) plane. A transition 
from C 2 / ** C 2 / cannot cross C/z without at the same time 
crossing C/'. This means that the path has two saddle points; 
the minimum in between is C2/. 

(v) From the previous analysis, it follows already that the C2/ 
-"• C2/ rearrangement is an allowed process, as is shown in Scheme 
VI. Within the t2 space the pathway can be visualized by the 
movement of a configurational point along one of the edges of 
the inscribed octahedron (Figure 3b). 

The electronic process in Scheme VI is of course allowed, due 
to the extreme symmetry lowering in the intermediate points. 
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) / / / / / / / / 
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Figure 6. Cross section of the Q11 configurational space, shown in Figure 
3b. Solid coordinate axes (—) represent C21, points. Antipodal structures 
such as C2/ and C2/ are on opposite sides of the Td center (cf. eq 15a). 
Broken lines (- - -) symbolize structures that only have C1 symmetry. The 
dotted line (•••) represents a C1 pathway between antipodal C21, structures. 
If this route contains one saddle point, say on C", it will for obvious 
topological reasons also cross a second equivalent saddle pont on C1". In 
between lies another C20 minimum in casu C2/. Therefore the inter­
change of antipodal isotopomers necessarily proceeds via an adjacent 
isotopomer. These conclusions remain valid if the C1 path is extended 
into the five-dimensional (t2 + e) space (cf. Scheme VI). 

Scheme VI 

C2,, C1 C1 C, C 2 K 

IB1 or 2 > IA> IA"> IA> IB, or 2> 

In conclusion, as a direct result of electronic and topological 
selection rules, the minimal energy path connecting two antipodal 
C2x, structures involves two consecutive steps between adjacent C20 

structures. A striking experimental confirmation of these results 
will be presented in section VIIB. 

VI. Evaluation of Reduced Matrix Elements for JT Coupling 
Before one can compare the general conclusions of the previous 

sections with experiment, it will be necessary to have a semi­
quantitative idea on the relative magnitude of the different vibronic 
constants in the interaction Hamiltonian. 

In an interesting series of papers, Bacci31,32 has used ligand field 
theory—in its angular overlap (AOM) version33—to obtain a quick 
and simple parametrization method for certain JT coupling 
constants.34 According to AOM, the one-electron ligand field 
matrix elements are given by 

H,j = (d,|7r-|d;.) = E L r,m
L 7}m

L Hmnt (22) 
L m~\ 

where TL is the AOM rotation matrix for ligand L, depending 
on the spherical polar coordinates of L; m runs over the five d 
orbitals and for any given ligand Hn = c, H22 = Hn = IT, /Z44 

= H55 = O. 
The characteristic AOM parameters a and IT should of course 

depend on the metal-ligand distance R, but explicit radial 
functions describing this dependence are beyong the scope of the 
model proper. Equation 22 is therefore ideally suited for the 
description of purely bending modes (e and t2) that leave the 
metal-ligand bond distances unchanged. As shown in eq 9 and 
10, the vibronic constants K, L, V, etc. are obtained from integrals 
over the operators (bfi/BQa). Since the Q/s describe specific 
angular displacements of the ligands, the operators (dft JdQ/) 

(31) Bacci, M. Chem. Phys. Lett. 1978, 58, 537. 
(32) Bacci, M. Chem. Phys. 1979, 40, 237. 
(33) Schaffer, C. E.; Jorgensen, C. K. MoI. Phys. 1965, 9, 401. 
(34) See also for a similar treatment of f electrons: Warren, K. D. Inorg. 

Chem. 1982, 21, 3467. 
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should be expressible in terms of the individual ligand operators 
(dftjdifii) and (d7i/ddL). The use of spherical polar coordinates 
necessitates special care in the action of the relevant differential 
operators. As Bacci's papers do not discuss this point in any detail, 
a few remarks are necessary in order to extend the use of A O M 
to the calculation of general vibronic constants. The infinitesimal 
displacements of a point ligand L are described by the nabla in 
spherical coordinates 

(JL± _d_ 

SOL 

1 

R1 sin eL 3<PL 
(23) 

where the first component refers to radial changes, the second 
to a displacement along a meridian, the third to a change in 
longitude along a parallel. Let Q be the row matrix of normal 
modes and q the row matrix of individual ligand angular dis­
placements. Then it is possible to define a unitary matrix such 
that 

dQ = dq-U (24) 

The elements of U are denoted UL\,a where the row index des­
ignates the ligand L and the nabla component 1 indicating the 
role of each specific V L ' component in dQ; the column index a 
refers to the symmetry of the normal mode. For the angular 
displacements of a tetracoordinated Td molecule, the quantities 
in eq 24 are given explicitly in Appendix C. Phase conventions 
are in agreement with ref 31, 32. 

The linear and second-order differential operators are given 
by 

d/dQa = ZUL],aVL
l 

LI 

d2 

. „ . „ = I E ^ L l 1 C t W ( V V ) L 1 / 1 ' 
^QaSQ0 Ll LT 

(25a) 

(25b) 

Since the A O M potential is additive in the ligands, it seems 
reasonable to neglect the interligand terms (L ^ L') in eq 25b. 
The intraligand term ( W ) L L

] 1 ' is not an ordinary product of linear 
differential operators, but it corresponds to a tensor, as given by 
Stone:35 

vv L L -

" Z2 

3 * L 2 

a 1 9 

zRh R~[ zT[ 

9 1 9 

ZRL « L s i n e L 9 v J L 

9 1 

ZRL RhsinOL 

1 9 1 

RL
2 Z8L sin 6L 

1 9 

9 

3VL 
9 

1 

RLSRL
 + RL

2 s i n 2 6 L 

9 1 9 

ZR~L~ R~lhB^ 

1 9 1 Z2 

RLZRL + RL1 ^L1 

1 9 1 9 

RL2 9 9 L sin 8 L 9 ^ L 

Z2 c o t 9 L 3 

^ L 2 + * L 2 3 6 L 
(26) 

This tensor is symmetrical and its trace equals the Laplacian V2. 
The surface operator applicable to purely angular motions can 
be obtained from eq 26 by imposing a constant value of RL. 

Using these expressions, the actual calculations can be carried 
out without difficulty. Table III collects all the required linear 
and quadratic coupling elements for the t2 orbital basis. More 
complete tables of the linear terms can be found from the liter­
ature.3 2 In this way, the different constants of eq 10 (AT, V, L, 
X, and W) can all be expressed in terms of the ligand field pa­
rameters (T and ir. 

It is well to stress that the linear terms satisfy the symmetry 
requirements of the Clebsch-Gordan coefficients (Appendix A), 
while the quadratic terms of Table HI can be seen to obey the 
higher order symmetry restrictions, derived by Englman.6a 

(35) Stone, A. J. MoI. Phys. 1980, 41, 1339. 

Table III. Relevant Linear and Quadratic Jahn-Teller Coupling 
Matrix Elements for the Tetrahedral Bending Modes in the d 
Orbital Base of the Three t2 Orbitals, i, TJ, ?° 

JT-active 
bending 

mode 

t , X t , 

e Xe 

e X t , 

non-zero JT matrix elements 

dH ZH lsfl 

dH dH IsJl 
<gIrTT-I?) =-<T] i r — I r 7 ) = - ^ 7 ( a - T r / 3 ) 

ZQe °Ue 
dH Asfl < ? w ? > = - ~ ( a ~ W 3 ) 

3R 

3R 

dH dH dH 

2s/2 
- ^ ( a - 7 , / 3 ) 

S1H Z2H d2H 
<? 1TJTT !f> = <»? Irjr-rl '?) = <f I r ^ i I?) = ZQn' 

la 31;r 

3R2 + 9R2 

3Cf2 ZQ%
2 

d2H d2H d2H 
< ? 1 ^ l p = < T "9"e? i r l > = < r l 9^ 1 ? > = 

la 31TT 

" ZR2 + 9R2 

h2H Ti2H B 2 / / 
< f l i e ? l ? > = < r , , 9 ^ , r ) > = < f l 9 " e ^ i r > = 

la 14TT 

JR2'!)]*2 

d2H d2H 
<£ 1TTT -TTT 1^ = ^ 1 ; ZQ% ZQn 

Z2H 
<fl 

ZQn ZQi; 
P--

Io 
?> = TTrr 

7TT 

3Qf ZQj: 6R2 \8R 

d2H d2H 

3 C e 2 

9 2H 

ZQg2 

Z2H 

la 31TT 

3R2 + 9R2 

Z2H Z2H 
• | ? > = - < T J | -

3R2 + 9R2 

ZQ6 zQe 

<?l 

R2 

Z2H 

Sir 

\JiR2 

la 

ZQe ZQ1 

14TT 

- I T ) ) : 

<?l 

3 C e 2 

Z1H 

ZQe 

3R2 9R2 

IQa 46TT 
l ? > = " 3R2+ 9R2 

a 
Z2H d2H 

If) = (r) I ZQg ZQr, 
Z2H 

Io 25rr 

ZQe Z Q ^ ) = ~TR~2 +Tw~2 

d2H 
(V - l ? ) = - < r ? l : 

ZQe ZQn" ZQeZQ^ 
la 2Sn 

2sflR2 6s/lR2 

Z2H la 15n 
(T)IrTT-TTrIf) = 

!?> = 

ZQg 3Cf 3i? J 9R2 

° R refers to the metal-to-ligand distance and a and TT are the 
AOM parameters. The linear matr ix elements are taken from 
ref 32. 

VII. Comparison with Experiment 

A. Static Geometry. As far as the static JT effect is concerned, 
the foregoing analysis can be summarized in the following way: 
in the absence of quadratic vibronic coupling absolute minima 
can only be of D2d or C30 symmetry. If quadratic coupling is 
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Figure 7. Examples of the static JT effect for T terms: Fe(CO)4 (d

8) 
retains C21, symmetry.7 CuCl4

2" (d9) exhibits a compressed tetrahedral 
structure with D2J symmetry.46 Co(CO)4 (d

9) is reported398 to adopt an 
umbrella-like trigonal structure (C30) with an opening angle of circa 100°. 

introduced (L, X, Win eq 10 are non-zero), C21, absolute minima 
might arise. 

More specifically, if Le > 0, the D2d minimum of eq 12b will 
become less stable than in the linear approximation. Similarly, 
eq 13b shows that negative X1 values tend to destabilize the trigonal 
minimum. The C20 extremum is influenced in a somewhat more 
complex way. If both Le and Lx are positive, and thus K'r < K1-
(eq 15c), the denominator of eq 15b becomes quite small, resulting 
in a marked stabilization of the C20 structure. This effect will 
be reinforced if WV^Vx is negative and if the bilinear (t2 X e) 
coupling element W is large. 

Since the sign of the distortion coordinates in eq 12a, 13a, and 
15a is determined by the same parameters, predictions of the 
equilibrium structures become also possible. 

All these relative predictions will be looked upon as the minimal 
empirical relevance of the AOM estimated values of the vibronic 
constants. They should provide a general understanding of the 
JT mechanism in a multidimensional problem, without requiring 
a gridwise search of the surface. 

Certain tetrahedral members of the carbonyl fragment series 
provide a test case of our treatment. The best studied example36,37 

is the d8 system Fe(CO)4; its structure has been determined from 
a detailed analysis of the IR spectrum in the CO-stretching re­
gion;38 it is shown in Figure 7. The fragment clearly has C21, 
symmetry. The structure of the related d9 systems, Fe(CO)4

- ion, 
and the isoelectronic Co(CO)4 fragment has not been determined 
equally unambiguously; the symmetry does not appear to be C21,, 
however, but rather D2d or C31,, possibly coexistent.39'40 

Apparently for a d8 system, such as Fe(CO)4, one expects the 
parent tetrahedral state to be a 3T1, based on the configuration 
e4t2

4. MCD measurements provide evidence that Fe(CO)4 is 
paramagnetic, in agreement with a triplet ground-state assign­
ment.41 Other concurrent arguments regarding the triplet nature 
of the ground state can be obtained from theoretical calculations. 

(36) Poliakoff, M.; Turner, J. J. In "Chemical and Biochemical Applica­
tions of Lasers"; Moore, C. B., Ed.; Academic Press: New York, 1980; Vol. 
5, pp 175-216. 

(37) Poliakoff, M. Chem. Soc. Rev. 1978, 7, 527. 
(38) Poliakoff, M.; Turner, J. J. J. Chem. Soc, Dalton Trans. 1974, 2276. 
(39) (a) Crichton, O.; Poliakoff, M.; Rest, A. J.; Turner, J. J. J. Chem. 

Soc, Dalton Trans. 1973, 1321. (b) Hanlan, L. A.; Huber, H.; Kiindig, E. 
P.; McGarvey, B. R.; Ozin, G. A. J. Am. Chem. Soc. 1975, 97, 7054. 

(40) Breeze, P. A.; Burdett, J. K.; Turner, J. J. Inorg. Chem. 1981, 20, 
3369. 

(41) Barton, T. J.; Grinter, R.; Thomson, A. J.; Davies, B.; Poliakoff, M. 
J. Chem. Soc, Chem. Commun. 1977, 841. 

Burdett was able to rationalize the observed C21, geometry on the 
basis of an AOM treatment, assuming a high-spin ground state.2 

In fact, typical tetracoordinated low-spin d8 complexes invariably 
adopt a square-planar geometry. Recently, the triplet character 
of the Fe(CO)4 ground state was also confirmed by an ab initio 
calculation, using observed bond angles.42 Clearly the 3T^e4I2

4) 
ground state specification characterizes Fe(CO)4 as a typical JT 
distorted molecule. Also the extent of the distortion is well within 
the range of a vibronic coupling mechanism. As an example, in 
CuCl4

2"—which is characterized by a much weaker ligand 
field—two of the Cl-Cu-Cl angles are opened up to 129° (see 
Figure 7), in qualitative agreement with Bacci's vibronic analysis, 
based on the AOM.32 The basic assumptions underlying the d 
orbital treatment set forth in section VI thus certainly are vali­
dated.43 

Let the open shell part of the 3T1 (d
8) and the 2T2(d

9) states 
be represented by eq 27, corresponding to t2

4 and t2
5 configurations, 

respectively: 

I3Tu) = | S V 

I3T1,) = -|^2fl 

|3Tlz> = \W2\ 

|2T2j> = |^ 2 f 2 | 

I2T2,) = |£V2 | 

|2T2f> = IfVfl (27) 

The single determinant functions consist of a half-filled shell 
subsystem (which cannot contribute to JT activity44) and one t2 

electron (t4) or one t2 hole (t5). The JT constants as defined in 
eq 10 can now readily be obtained from the corresponding 3T1 

or 2T2 matrix elements. In the d8 case one has for instance 

"--(HiK)-*•-(" W2 d2W\ 

dQe2\ 
rA etc. 

(28) 

Combining these expressions with the one-electron matrix elements 
in Table III finally yields 

4-\/2 4 V 2 / T \ 

2 \ / 2 / 

~3R" "-^(-?) 

<-*£(-§) 
3R2\ 21 / 

(29) 

where the upper signs refer to 3T1, the lower signs to 2T2. The 
a parameter is certainly positive, and for a -w acceptor ligand such 
as CO, it is generally assumed that ir < O. Hence, for d8 systems 
Ke, V1, Le, and Lx are predicted to be positive, while Xx and W will 
be negative. These are precisely the sign combinations favoring 
the experimentally observed C20 structure of Fe(CO)4. The op­
posite predictions for d9 systems are in agreement with the C3„ 
and/or D2J symmetry suggested for Fe(CO)4" and Co(CO)4. Also, 

(42) Veillard, A. Nouv. J. Chim. 1981, 5, 599. Personal communication. 
(43) Note that in the vicinity of a tetrahedral origin s orbital participation 

is unlikely to be very large since s-d mixing is strictly forbidden in Td sym­
metry. Admittedly d-p mixing can occur, but since all three t2 orbitals will 
be stabilized approximately to the same extent, we do not expect the proposed 
energetics to be invalidated. 

(44) Ceulemans, A.; Beyens, D.; Vanquickenborne, L. G. / . Am. Chem. 
Soc. 1982, 104, 2988. 
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F e ( C O ) 

Figure 8. Detectable isomerization modes between the three possible 
isotopomers of Fe(CO)2(

13C18O)2. The black circles represent 13C18O. 
The so-called Berry process corresponds to the concerted exchange of 
axial sites (at an angle of 145°) and equatorial sites (at 120°). The 
incomplete pseudo-rotation is referred to as the non-Berry mode. Only 
the latter mode can be induced by IR laser light.37 

going beyond the class of the metal carbonyl compounds, and 
considering CuCl4

2", a d9 system where x > O, the signs of eq 29 
will not be changed, and from a combination of eq 12b, 13b, and 
29, one predicts a D2J ground state—again in agreement with 
experiment.32,45,46 

As far as the sense of the relevant distortion is concerned 
(compression, elongation, etc.) the most detailed data can ap­
parently be derived from an IR analysis, based on the band in­
tensity/frequency factored force field method.47 For Fe(CO)4, 
the thus obtained information on the C-M-C bond angles shows 
that the fragment shape approximately resembles a flattened 
tetrahedron38 (see also Figure 7). Choosing a C 2 / symmetry 
alignment, the observed bond angles therefore correspond to Qe 

< O (tetragonal component of the distortion). From eq 15a, one 
will verify that negative Q6 values imply Vt > O and WV1 < O; 
eq 29 shows that these conditions are indeed satisfied for a d8 

system. 
A Cio

xyz symmetry fitting of the IR spectrum40 of the d9 system 
Co(CO)4 leads to negative values for Q(, Qn, and Q{ and hence 
to V1 < O (eq 13a). Again this observation is in agreement with 
the AOM predictions of eq 29. 

B. Dynamic Behavior. Rearrangements on a JT surface, as 
described in the topological schemes of the previous section, can 
only be observed by using isotope labeling.48 

Remarkably extensive studies of isotopically enriched Fe(CO)4 

fragments have been carried out by Poliakoff and Turner.7'37,49 

They revealed the occurrence of stereospecific rearrangements, 
induced by IR laser light50 (see Figure 8). The observed intra-
moleular ligand permutations uniquely correspond to the inter-
conversion of nearest neighbors among the six equivalent C2v 

structures that are (partly) represented in Figure 3b. The so-called 
Berry exchange, which would interconvert antipodal C20 structures 
(situated at opposite ends of the same Qtl axis), is apparently not 
taking place under the same activation conditions. The only 
observed pathways thus precisely correspond to the thermally 
allowed reaction, which was predicted in Scheme VI. 

As shown in some detail in Figures 9 and 10, the Berry exchange 
is forbidden, since it interconverts two structures characterized 

(45) Bacci, H. J. Phys. Chem. Solids 1980, 41, 1267. 
(46) Reinen, D. Comments Inorg. Chem. 1983, 2, 227. 
(47) Burdett, J. K. Inorg. Chem. 1981, 20, 2607. 
(48) Bouman, T. D.; Duncan, C. D.; Trindle, C. Int. J. Quantum Chem. 

1977, XI, 399. 
(49) McNeish, A.; Poliakoff, M.; Smith, K. P.; Turner, J. J. J. Chem. Soc., 

Chem. Commun. 1976, 860. 
(50) The laser frequency matches the C-O stretching vibrations. Rapid 

energy transfer to C-M-C bending modes at lower energy is assumed. 
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Figure 9. Detailed orbital and state correlation diagrams for JT distorted 
Fe(CO)4. The relevant distortion coordinates, Qe and Q{, are defined in 
Figure 2. Character conventions for C2/ are specified in ref 25. In the 
left upper corner are shown the three degenerate starting orbitals of t2 
symmetry. If the tetrahedron is compressed (Q9 < O) the t2 level splits 
into two components of b2 and e symmetry. Upon compression the 
ligands approach the xy coordinate plane. As a result the xy orbital is 
destabilized while the e orbitals, which have no density in this plane, are 
lowered in energy. A further symmetry reduction along g f causes a 
splitting of the e level into b! and b2 components. The b; component (xz 
+ yz) has its major density in the o-*-1' plane (cf. Figure 1), whereas b2 
reaches its maximal density in o**. The sign of the splitting can simply 
be explained, as shown in Figure 10. Obviously if the sign of Qs is 
reversed, the b level ordering is equally reversed. The lower part of the 
figure shows a triplet-state correlation diagram, which can immediately 
be obtained from the orbital correlation by populating the t2 orbitals by 
four electrons. The tetrahedral ground state is an open shell 3T1 state. 
State functions |TU), IT1̂ ,), and |Tlr) are specified in eq 27. These 
functions directly describe the D2J components |A2> and |E) (see also 
Figure 5). The C21, components are listed in eq 14. Clearly the inter-
conversion of antipodal C211 structures changes the symmetry of the 
ground-state eigenvector and is therefore electronically forbidden. 

by a different ground-state symmetry with respect to the group 
that is conserved during the process (C20). In fact the Berry 
interchange of the two C 2 / structures reverses the sign of g f in 
eq 15a and hence alters the eigenvector: the Bi ** B2 process is 
forbidden. Photochemically however the reaction is predicted— 
and observed—to be allowed. A topological analysis of this mode 
selectivity in Fe(CO)4 (as compared to SF4) is presented else­
where.51 

C. Harmonic Force Constants. Unlike all other vibronic 
contributions in eq 10, the operators corresponding to the harmonic 
force constants Kt and K1 are totally symmetric; therefore they 
contain contributions from the completely filled e shell in e4t2". 

(51) Poliakoff, M.; Ceulemans, A. J. Am. Chem. Soc. 1984, 106, 50. 
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Table IV 

/ Q e \ / Ke + iLe (N/3S)I6 ayzzW 

/ Q e \ / (\/3s)ie Ke-xLe s/3ayzzW 
Q? = ayzzW -s/3aya2W Kt + pLt 

\ QT, / \ axa0!V s/l^W -2^X4 

\Qf/ \ -2axayW O -2axa0X t 
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Figure 10. Explanation in a pictorial way of the sign of the C20 splitting 
in Figure 9. Cross sections shown are along a** and a** (cf. Figure 1), 
containing, respectively, ligands 1 and 2 and ligands 3 and 4. The dots 
represent ligand positions in a compressed tetrahedron, with angles L 1,2 
= /3,4 > 109.47°. Arrows indicate angular motions that correspond to 
positive values of the Q1 distortion, as defined in Figure 2. The orbital 
(1/VS)(Xz + yz) has its major density in the a"y plane. Obviously, if 
Q$ is activated this orbital will decrease in energy, since the relevant 
ligands 1 and and 2 are displaced toward a nodal plane. On the contrary, 
the orthogonal function (l/V2)(xz - yz), with major density in a^, will 
be destabilized, as ligands 3 and 4 are moving into directions, where this 
orbital function reaches its maximal value. In conclusion, for positive 
values of Q; one expects (xz + yz) to be lower in energy than (xz - yz). 
For negative values of Q1 this orbital order must be reversed. 

However, their calculation is substantially simplified, if one realizes 
that the barycenter energy of the d manifold is not affected by 
angular displacements. The contribution of an e4t2" configuration 
is thus exactly outweighed by the contribution of the I2

6'" holes. 
Using this hole formalism, one obtains for a e4t2" system 

K= K1 = — ( 6 - n)(3ff - 4 T ) = - ^ : ( 6 - n)Dq (30) 
9R2 9R1 

where Dq is the classical cubic crystal field parameter. Ligand 
field calculations thus indicate that harmonic force constants for 
e and t2 modes have identical d shell contributions. This qua-
si-degeneracy is perfectly in line with all evidence from IR 
spectroscopy on tetrahedral compounds.52 Nonetheless, it should 
be kept in mind that the LF approach certainly underestimates 
the actual values of K1. and K1, since for instance in a d10 system 
force constants would be predicted to vanish entirely! But one 
can safely assumes that K^ and K1 are very nearly equal and larger 
in amplitude than any other nontotally symmetric contribution. 
This constraint—explicitly considered in section VA—localizes 
the hypersurface of interest around a central JT origin. 

VIII. Conclusion 
Somewhat paradoxically, symmetry is seen to play an important 

role in the understanding of the adiabatic JT effect, the very nature 
of which is symmetry destruction. The reason is on the one hand 
that the high symmetry of the unstable JT origin is reflected in 
the geometry of the surrounding configuration space. On the other 
hand, the epikernel principle operates in such a way that the JT 
symmetry destruction is minimized. 

While presented as a case study, the present treatment should 
prove sufficiently general to be carried over to other systems as 
well. As an example, threefold degenerate octahedral states 

Ceulemans, Beyens, and Vanquickenborne 

&xzzW -2nxzyW \ "' /iVe \ 
s/2zxazW 0 \ / (-VJs)K6 

-2zxSLyXt -2zxzzXt 2&yzzVx 

Kt + qLt -2zyzzXt / \ 2zxzzVt 

-2aya zZ t Kt + rLt / \2zxzyVt / 

Table V 

dQ= (AQ6 AQe AQ% AQn dg f AQx AQy AQZ) 
dq = R(Ae1 Ae2 Ae3 Ae„ sin 9 ^ 1 sin B2A^2 sin 8 ,dip, sin 0„d^4) 
U= / -V 2 0 -i/„ -V4 V2 -V3/4 V3/4 0 \ 

/ - ' / a 0 V4 '/4 V2 V3/4 -V3/4 0 \ 
/ V2 0 V4 -V4 V2 N/3/4 V/3/4 0 \ 
I V2 0 - V 4 V. V2 -V3 /4 -V3/4 0 J 
I 0 -V2 s/314 -v/3/4 0 - '/4 -'/4 V2 I 
\ 0 -V2 -N /3 /4 V3/4 0 '/4 1U V2 / 
\ 0 V2 -V3/4 -v/3/4 0 V4 -V4 V2 / 
\ 0 V2 V3/4 V3/4 0 - '/4 1U V 2 / 

present a completely analogous problem. The recently observed53 

Dlh symmetry of V(CO)6 is equivalent to the C20 symmetry of 
Fe(CO)4. Therefore, in all probability, the D2h symmetry lowering 
must be situated in the combined space of the octahedral t2g and 
eg modes. 

Finally, it should be stressed that we have not paid attention 
to the role of spin-orbit coupling. While this does not change the 
symmetry of the configuration space, rather important effects may 
be expected for the relevant electronic states. Examples are 
Ru(CO)4 or Os(CO)4 which are presently being investigated. 

Acknowledgment. The impetus to the present work has come 
from a lecture on Fe(CO)4, held by Dr. M. Poliakoff at the 5th 
International Symposium on the Photochemistry and Photophysics 
of Coordination Compounds (Paris, Aug 2-5, 1982). A Stanley 
Kipping Fund has allowed one of us (A.C.) to visit the inorganic 
chemistry laboratory in Nottingham, U.K. Many stimulating 
discussions with Prof. J. J. Turner and Dr. M. Poliakoff are 
gratefully acknowledged. Our research was financially supported 
by the Belgian Government (Programmatie van net Weten-
schapsbeleid). A.C. is indebted to the Belgian National Science 
Foundation (NFWO) for a research grant. 

Appendix 
A. The CTy matrices used in eq 10 contain the Clebsch-Gordan 

coupling coefficients for the nontotally symmetric squares of T1 

and T2 states (cf. ref 17). Labeling order of rows and columns 
corresponds to T1x, T1^, T l r for a T1 state and T2{, T2,, T2f for 
a T2 state.16 

/V 2 O O \ /-v/3/2 O 0\ 
C0= O V2 O CHO V3/2 O 

\ 0 O - 1 / \0 O O/ 

/O O O \ / O O - l \ /O - 1 0 \ 
Ct= O O - 1 Cn= O OO Cf= - 1 O O 

6 \ o - 1 0 / V - 1 0 0 / \ o 0 0 / 

It is interesting to observe that—from a permutational point of 
view—the matrices of C{, C,, and Cf are more symmetrical than 
C9 or Ce. This is because the t2 coordinates have been constructed 
in monomial form (for more details, see ref 19). 

B. The matrix equation for the configurational coordinates, 
Qa, of extremal points as a function of the a, eigenvector is shown 
in Table IV. This equation can directly be derived from the 
stationary condition in eq l ib . It is defined only if the 5 X 5 
matrix is nonsingular. ax, ay, and a2 are the eigenvector com­
ponents of the vibronic Hamiltonian (eq Ha). To alleviate the 
notation, the subscript i has been dropped throughout. In addition 
we define p = 3 / 2 a / - ' /2 , q = 3 / 2 a / - V2, r = 3/2az

2 - >/2, and 
s = (a^2 - a / ) / 2 . 

(52) Nakamoto, K. "Infrared Spectra of Inorganic and Coordination 
Compounds"; 2nd ed.; Wiley: New York, 1970. 

(53) Bratt, S. W.; Kassyk, A.; Perutz, R. N.; Symons, M. C. R. J. Am. 
Chem. Soc. 1982, 104, 490. 
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C. The angular motion of four ligands in a tetrahedral con­
figuration, at a fixed distance R from the central metal and 
numbered as in Figure 1, can be decomposed into eight normal 
coordinates. The five JT-active bending coordinates follow e and 
t2 representations and are denoted, respectively, Qe, Q1 and Qf, 
Qv g f . Furthermore there are three bodily rotations, denoted Qx, 

I. Introduction 

During the past decade, conjugated polymers have become the 
subject of great research activity.1"3 This interest is due to the 
discovery that the electrical conductivity of a large number of 
organic polymers, such as poly (acetylene),4'5 poly(p-phenylene),6 

and poly (p-phenylene sulfide),7 can be increased by 12—18 orders 
of magnitude up to the metallic level. This increase in conductivity 
is achieved by doping. 

The increased experimental activity in conjugated polymers8"-10 

has led to intensified efforts to achieve theoretical understanding 
using quantum chemical calculations. Whangbo and Hoffmann11 

have examined a variety of conjugated one- and two-dimensional 
polymers using the extended Huckel (EH) method. They have 
explored how band-gap sizes and the occurrence of partially filled 
bands are related to unit cell constitution and the geometrical 
disposition of the atoms in the unit cell. Duke et al.,12-15 using 

(1) Kertesz, M. Adv. Quantum Chem. 1982, 15, 161. 
(2) "Molecular Metals"; Hatfield, W. E., Ed.; Plenum Press; New York, 

1979; Vol. 1. 
(3) Andrg, J. M. Adv. Quantum Chem. 1980, 12, 65. 
(4) Etemad, S.; Heeger, A. J.; McDiarmid, A. G. Annu. Rev. Phys. Chem., 

1982, 33, 443. 
(5) Salaneck, W. R.; Thomas, H. C; Duke, C. B.; Paton, A.; Plummer, 

E. W.; Heeger, A. J.; MacDiarmid, A. G. J. Chem. Phys. 1979, 71, 2044. 
(6) Ivory, D. M.; Miller, G. G.; Sowa, J. M.; Shacklette, L. W.; Chance, 

R. R.; Baughman, R. H. J. Chem. Phys. 1979, 71, 1506. 
(7) Chance, R. R.; Shacklette, L. W.; Miller, G. G.; Ivory, D. M.; Sowa, 

J. M.; Elsenbaumer, R. L.; Baughman, R. H. J. Chem. Soc., Chem. Commun. 
1980; 348. 

(8) Fabish, T. J. CRC Crit. Rev. Solid State Mater. Sci., 1979, 383. 
(9) Baughman, R. H.; Bredas, J. L.; Chance, R. R.; Eckhardt, H.; Elsen­

baumer, R. L.; Ivory, D. M.; Miller, G. G.; Preiziosi, A. F.; Shacklette, L. 
W. "Conductive Polymers"; Seymour, R. B., Ed., Plenum Press: New York, 
1981; p 137. 

(10) Duke, C. B. "Extended Linear Chain Compounds"; Miller, J. S., Ed.; 
Plenum Press: New York, 1982; Vol. 2, p 59. 

(11) Whangbo, M. H.; Hoffmann, R.; Woodward, R. B. Proc. R. Soc. 
London, Ser. A, 1979, 366, 23. 

(12) Duke, C. B.; Paton, A.; Salaneck, W. R. MoI Cryst. Liq. Cryst. 1982, 
83, 177. 

(13) Ford, W. K.; Duke, C. B.; Paton, A. J. Chem. Phys. 1982, 77, 4564. 
(14) Ford, W. K.; Duke, C. B.; Paton, A. J. Chem. Phys. 1983, 78, 4734. 

Qjn Qzt which transform as a ^ representation. Let d0, and sin 
0(d(# represent infinitesimal angular displacement of ligand L, in 
a Cartesian frame as in Figure 1. Equation 24 in the text can 
now be specified as in Table V. As an example Figure 2 rep­
resents the ligand motion associated with positive values of Q1 and 

Qt-

the spectroscopically parameterized CNDO-S3 model, have 
studied the relationships between macromolecular architecture 
and characteristic features in the photoemission spectra of poly­
mers. Recently, Bredas et al.,16"19 using a valence effective 
Hamiltonian (VEH) technique, have examined a number of or­
ganic polymers in order to define the variations in molecular, 
crystallographic, and defect structures that are compatible with 
high conductivity. 

In this paper, we consider the effects of chemical substitution 
on ir-band-edge energies in conjugated polymers. We find that 
it is possible to predict these effects semiquantitatively and hence 
to estimate, without calculation, the size of the ir-band gaps in 
substitutionally related polymers. Furthermore, we show that 
calculated ir-band-edge energies are transferable among related 
systems. 

Throughout this paper, we will use the extended Huckel crystal 
orbital (EHCO)11,20 method to illustrate our conclusions con­
cerning the trans polymers shown in Figure 1. 

The paper is structured as follows. In section II, we consider 
the effects of chemical substitution on the ir-band-edge energies 
of regular r/-a«5-poly(acetylene). The effect of subsequent 
bond-length alternation is examined in section III. An illustration 
is given, in section IV, of the transferability of band-edge energies 
from known polymers to a new one, and the applicability of these 
ideas to SCF calculations is considered in section V. 

II. Effect of Substitution on ir-Band-Edge Energies 
Backbone Substitution: Regular Poly(acerylene), Poly(methine 

imine), and Poly(sulfur nitride). First, we consider poly(acetylene) 

(15) Duke, C. B.; Paton, A. "Conductive Polymers"; Seymour, R. B., Ed., 
Plenum Press: New York, 1981. 

(16) Bredas, J. L.; Chance, R. R.; Baughman, R. H.; Silbey, R. Int. J. 
Quantum Chem. Symp. 1981, 15, 231. 

(17) Bredas, J. L.; Chance R. R.; Baughman, R. H.; Silbey, R. J. Chem. 
Phys. 1982, 76, 3673. 

(18) Bredas, J. L.; Themans, B.; Andre, J. M. J. Chem. Phys. 1983, 78, 
6137. 

(19) Baughman, R. H.; Bredas, J. L.; Chance, R. R.; Elsenbaumer, R. L.; 
Shacklette, L. W. Chem. Rev. 1982, 82, 209. 

(20) Whangbo, M. H.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 6093. 
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Abstract: Perturbation theory is used to clarify the effects of chemical substitution on 7r-band-edge energies in conjugated 
polymers. One can roughly estimate (without computation) the effect of chemical substitution on computed (extended Huckel) 
ir band-edge energies, hence upon ir band gaps. Furthermore, once an edge energy is actually computed for one polymer, 
it is, in many cases, quantitatively transferable to substitutionally related polymers. This allows x-band-gap energies to be 
predicted quite accurately for systems not yet studied theoretically. The transferability phenomenon does not appear to be 
nullified by bond-length alternation or to be dependent upon choice of theoretical method. 
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